This documentation is out of date.
The new version of the documentation is here: https://cannylogic.com/docs |
Difference between revisions of "CFD Language"
(→Управление ресурсами контроллера) |
(→Functional Block) |
||
Line 23: | Line 23: | ||
Функциональный блок является графическим элементом функциональной диаграммы, обозначающим функцию, алгоритм или математическое выражение, производящее вычисление своих выходных данных в зависимости от полученных извне входных данных. На изображении функционального блока, его входы располагают слева, а выходы справа. | Функциональный блок является графическим элементом функциональной диаграммы, обозначающим функцию, алгоритм или математическое выражение, производящее вычисление своих выходных данных в зависимости от полученных извне входных данных. На изображении функционального блока, его входы располагают слева, а выходы справа. | ||
− | [[File:3_2_1.png]] | + | [[File:3_2_1.png|9000px]] |
[[Справочник по встроенным функциональным блокам | Стандартная библиотека функциональных блоков языка CFD]] включает в себя как простейшие блоки, выполняющие элементарные логические преобразования над своими входными данными — элементы И, ИЛИ, НЕ, так и более сложные функции: триггеры, генераторы, коммутаторы. | [[Справочник по встроенным функциональным блокам | Стандартная библиотека функциональных блоков языка CFD]] включает в себя как простейшие блоки, выполняющие элементарные логические преобразования над своими входными данными — элементы И, ИЛИ, НЕ, так и более сложные функции: триггеры, генераторы, коммутаторы. |
Revision as of 15:17, 26 November 2015
В интегрированной среде разработки CannyLab, для программирования ПЛК CANNY7 используется язык программирования Canny Function Diagram (CFD). При его разработке, была поставлена цель создать инструмент, максимально отвечающий возможностям контроллера и в то же время достаточно близкий к отраслевому стандарту. Язык диаграмм функциональных блоков Function Block Diagram (FBD), взятый за основу при разработке CFD, является, пожалуй, одним из самых сбалансированных среди пяти языков программирования, одобренных международной электротехнической комиссией для создания пользовательских программ ПЛК в рамках стандарта МЭК 61131-3.
Являясь графическим языком программирования, CFD отличается высокой наглядностью, сопоставимой с наглядностью принципиальных схем, но находится на более высоком уровне абстракции, позволяющем скрыть несущественные детали реализации.
Contents
Функциональная диаграмма
Программа на языке CFD, представляющая собой чертеж (схему), на котором изображены функциональные блоки, связывающие их друг с другом соединительные линии (сети) и вспомогательные элементы, называется функциональной диаграммой.
Процесс выполнения программы на языке CFD можно описать как последовательное, обычно слева на право, вычисление каждого функционального блока диаграммы, с передачей результата к следующему связанному с ним функциональному блоку. Такую организацию вычислений будем называть потоком выполнения.
Представление программы подобным образом, позволяет легко проследить процесс ее выполнения, просто рассматривая изображение, переходя взглядом от блока к блоку по соединительным линиям.
В языке CFD, взаимное расположение блоков на ациклической диаграмме не влияет на порядок их выполнения. Порядок выполнения функциональных блоков такой диаграммы вычисляется автоматически по следующему правилу: каждый функциональный блок выполняется тогда, когда вычислены все его входы.
При определении порядка выполнения циклической, то есть имеющей обратные связи диаграммы, функциональные блоки участвующие в цикле обратной связи выполнятся в таком порядке, чтобы последним исполнился функциональный блок находящийся правее всех остальных участвующих в цикле блоков.
Functional Block
Функциональный блок является графическим элементом функциональной диаграммы, обозначающим функцию, алгоритм или математическое выражение, производящее вычисление своих выходных данных в зависимости от полученных извне входных данных. На изображении функционального блока, его входы располагают слева, а выходы справа.
Стандартная библиотека функциональных блоков языка CFD включает в себя как простейшие блоки, выполняющие элементарные логические преобразования над своими входными данными — элементы И, ИЛИ, НЕ, так и более сложные функции: триггеры, генераторы, коммутаторы.
Функциональный блок, в зависимости от его типа, может иметь несколько входов и несколько выходов, использовать для вычислений свою собственную память, а так же обращаться к ресурсам операционной системы контроллера, например к таймерам и использовать полученные данные в расчетах своих выходных значений.
В среде CannyLab, источниками входных данных для функционального блока могут быть функциональные блоки, с чьими выходами он связан соединительными линиями (сетями), введенные пользователем или выбранные из справочника числовые константы либо данные регистров служебной памяти контроллера.
Любой вход или выход функционального блока может быть инвертирован. В случае инверсии входа, в качестве входных данных в функциональный блок будет передано значение являющееся результатом операции «Логическое НЕ» над реальными входными данными. В случае инверсии выхода, перед передачей результата вычисления функционального блока «наружу», к нему будет применена операция «Логическое НЕ».
Сеть
Линия, соединяющая на функциональной диаграмме источник данных с одним или несколькими получателями данных, называется сетью. В языке CFD, источником данных обычно выступает выход какого-либо функционального блока, а получателем вход другого функционального блока. В языке CFD любая сеть может иметь только один источник данных.
В терминах языков программирования, сеть является переменной, местом хранения данных. Функциональный блок по окончанию вычислений, записывает в сеть своё выходное значение, а выполняющиеся следом за ним функциональные блоки, к чьим входам данная сеть подключена, считывают из этой сети хранящее в ней значение и используют его в своих вычислениях в качестве входных значений. Наряду с использованием анонимных сетей, в CannyLab, сетям можно назначать имена, которые будут отображаться на диаграмме. Логически единую сеть, для которой назначено имя, можно для удобства компоновки, разделять на несколько визуально не связанных между собой сегментов. Например, два сегмента «Давление в шинах, кПа» на приведенном ниже рисунке представляют одну и ту же сеть, и имеют одинаковое значение в каждый момент времени, хотя визуально не связаны.
Data
В языке CFD, все использующиеся данные являются 16-битными целыми неотрицательными числами в диапазоне от 0 до 65535. Результатом арифметических операций будет числовое значение из указанного диапазона, а результаты логических операций представляются значениями «1» (истина) и «0» (ложь).
При выполнении функциональной диаграммы, там где это необходимо, преобразование данных от логического типа к числовым данным и обратно выполняется автоматически по следующим правилам:
- При преобразовании числа к логическому значению, ноль преобразуется в значение «ложь», любое число отличное от нуля – в значение «истина».
- В арифметических операциях логические значения «ложь» и «истина» представляются как числа 0 и 1 соответственно.
- Инверсия на входе или выходе любого блока, автоматически преобразует его данные к логическому типу.
Результаты арифметических операций берутся по модулю 65535. Это означает, что если результат операции превысил 65535, то из него автоматически вычитается 65536. А если результат оказался меньше нуля, то к нему прибавляется 65535 и еще единица.
Например: | 65535 + 1 = 0 | 1 – 2 = 65535 | |
65535 + 2 = 1 | 1 – 3 = 65534 | ||
65500 + 122 = 86 | 117 – 259 = 65294 |
Управление ресурсами контроллера
Для того, чтобы разработанная пользователем функциональная диаграмма могла использовать данные физических входов контроллера и изменять состояние его физических выходов, получать и передавать данные по интерфейсам передачи данных, или хотя бы просто изменять состояние встроенного светодиода контроллера, диаграмму и ресурсы контроллера необходимо связать между собой.
В контроллере CANNY7 доступ к аппаратным ресурсам из пользовательского приложения, реализован в форме чтения и записи данных по определенным адресам (регистрам) отображающим состояние этих ресурсов.
Ресурсы контроллера требуют определенного порядка доступа. Например, в самом простом случае, чтобы включить встроенный светодиод контроллера, достаточно передать по определенному адресу «1», а чтобы выключить «0». Но уже для того, чтобы использовать универсальный внешний канал контроллера для управления реле, его необходимо предварительно его инициализировать, записав значение требуемого режима его работы в адрес его конфигурации. Лишь после этого появляется возможность, устанавливая «1», или «0» в адрес выходного значения канала, управлять электрическим потенциалом данного канала контроллера.
Так будет выглядеть приведенная ранее диаграмма управления светофором железнодорожного переезда, после привязки к ресурсам контроллера. Такая диаграмма уже полностью пригодна для записи в ПЛК и управления реальным оборудованием.
Список адресов всех доступных пользователю ресурсов контроллера находится в справочнике адресов CannyLab, который доступен пользователю через контекстное меню при назначении входов и выходов типа «Адрес» функциональных блоков.
Конфигурация определенных ресурсов контроллера требует использования специальных констант, все они поименованы и собраны в списке констант CannyLab, который доступен пользователю при назначении входов типа «Константа» функциональных блоков.
Подробное описание ресурсов CANNY 7 и порядка доступа к ним, рассматривается в справочном руководстве по контроллеру.